Role of the hMLH1 DNA mismatch repair protein in fluoropyrimidine-mediated cell death and cell cycle responses.

نویسندگان

  • M Meyers
  • M W Wagner
  • H S Hwang
  • T J Kinsella
  • D A Boothman
چکیده

DNA mismatch repair (MMR) is an efficient system for the detection and repair of mismatched and unpaired bases in DNA. Deficiencies in MMR are commonly found in both hereditary and sporadic colorectal cancers, as well as in cancers of other tissues. Because fluorinated thymidine analogues (which through their actions might generate lesions recognizable by MMR) are widely used in the treatment of colorectal cancer, we investigated the role of MMR in cellular responses to 5-fluorouracil and 5-fluoro-2'-deoxyuridine (FdUrd). Human MLH1(-) and MMR-deficient HCT116 colon cancer cells were 18-fold more resistant to 7.5 microM 5-fluorouracil (continuous treatment) and 17-fold more resistant to 7.5 microM FdUrd in clonogenic survival assays compared with genetically matched, MLH1(+) and MMR-proficient HCT116 3-6 cells. Likewise, murine MLH1(-) and MMR-deficient CT-5 cells were 3-fold more resistant to a 2-h pulse of 10 microM FdUrd than their MLH1(+) and MMR-proficient ME-10 counterparts. Decreased cytotoxicity in MMR-deficient cells after treatment with various methylating agents and other base analogues has been well reported and is believed to reflect a tolerance to DNA damage. Synchronized HCT116 3-6 cells treated with a low dose of FdUrd had a 2-fold greater G(2) cell cycle arrest compared with MMR-deficient HCT116 cells, and asynchronous ME-10 cells demonstrated a 4-fold greater G(2) arrest after FdUrd treatment compared with CT-5 cells. Enhanced G(2) arrest in MMR-proficient cells in response to other agents has been reported and is believed to allow time for DNA repair. G(2) cell cycle arrest as determined by propidium iodide staining was not a result of mitotic arrest, but rather a true G(2) arrest, as indicated by elevated cyclin B1 levels and a lack of staining with mitotic protein monoclonal antibody 2. Additionally, p53 and GADD45 levels were induced in FdUrd-treated HCT116 3-6 cells. DNA double-strand break (DSB) formation was 2-fold higher in MMR-proficient HCT116 3-6 cells after FdUrd treatment, as determined by pulsed-field gel electrophoresis. The formation of DSBs was not the result of enhanced apoptosis in MMR-proficient cells. FdUrd-mediated cytotoxicity was caused by DNA-directed and not RNA-directed effects, because administration of excess thymidine (and not uridine) prevented cytotoxicity, cell cycle arrest, and DSB formation. hMLH1-dependent responses to fluoropyrimidine treatment, which may involve the action of p53 and the formation of DSBs, clearly have clinical relevance for the use of this class of drugs in the treatment of tumors with MMR deficiencies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell cycle regulation of the human DNA mismatch repair genes hMSH2, hMLH1, and hPMS2.

Hereditary nonpolyposis colorectal cancer is a cancer susceptibility syndrome that has been found to be caused by mutations in any of several genes involved in DNA mismatch repair, including hMSH2, hMLH1, or hPMS2. Recent reports have suggested that hMSH2 and hMLH1 have a role in the regulation of the cell cycle. To determine if these genes are cell cycle regulated, we examined their mRNA and p...

متن کامل

The human MLH1 cDNA complements DNA mismatch repair defects in Mlh1-deficient mouse embryonic fibroblasts.

The DNA mismatch repair gene hMLH1 is reported to function in mutation avoidance, cell cycle checkpoint control, the cytotoxicity of various DNA-damaging agents, and transcription-coupled nucleotide excision repair. Formal proof of the involvement of hMLH1 in these processes requires single gene complementation. We have stably expressed hMLH1 from a transfected cDNA in Mlh1-deficient mouse embr...

متن کامل

DNA mismatch repair (MMR) mediates 6-thioguanine genotoxicity by introducing single-strand breaks to signal a G2-M arrest in MMR-proficient RKO cells.

PURPOSE The DNA mismatch repair (MMR) system plays an important role in mediating cell death after treatment with various types of chemotherapeutic agents, although the molecular mechanisms are not well understood. In this study, we sought to determine what signal is introduced by MMR after 6-thioguanine (6-TG) treatment to signal a G(2)-M arrest leading to cell death. EXPERIMENTAL DESIGN A c...

متن کامل

Selenium compounds activate ATM-dependent DNA damage response via the mismatch repair protein hMLH1 in colorectal cancer cells.

Epidemiological and animal studies indicate that selenium supplementation suppresses risk of colorectal and other cancers. The majority of colorectal cancers are characterized by a defective DNA mismatch repair (MMR). Here, we have employed the MMR-deficient HCT 116 colorectal cancer cells and the MMR-proficient HCT 116 cells with hMLH1 complementation to investigate the role of hMLH1 in seleni...

متن کامل

The role of the DNA mismatch repair system in the cytotoxicity of the topoisomerase inhibitors camptothecin and etoposide to human colorectal cancer cells.

The DNA mismatch repair (MMR) system is involved in the correction of base/base mismatches and insertion/deletion loops arising during replication. In addition, some of the MMR components participate in recombination and double-strand break repair as well as cell cycle regulation and apoptosis. The inactivation of MMR genes, usually hMSH2 or hMLH1, is associated with human colorectal cancers an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 61 13  شماره 

صفحات  -

تاریخ انتشار 2001